Agenda

• The Enterprise Architecture Vision
• Enterprise Architecture Governance
• EA Program Approach
• Key Terminology
• Interoperation: Current State of Identity and SIS Data
• Interoperation: Domains and Plan
• Interoperation: Vision and Proposed Guiding Principles
The Enterprise Architecture Vision

Our Vision for Enterprise Architecture

Provide a technology framework and a set of standards to enable acquisition, development, and deployment of IT services that maximize interoperation, minimize duplication, and simplify the IT environment across all of Harvard.

Strategic Objectives

- Deliver an enterprise architecture framework that drives technology and development standards across Harvard
- Provide common approaches for integration across enterprise applications, processes, and data
- Align and rationalize technology decisions and investments
- Identify redundant or conflicting processes and data across organizations

Guiding Principles

- Ensure that EA provides active direction and delivers value to the organization
- Counter complexity with common solutions
- Enable sharing of data across organizations
- Preference for open-source, COTS, and programmatic interfaces — both in what we obtain and what is produced
- Encourage, define, and ultimately provide best-practice solutions
- Evolve framework and solutions with advances in technology

Key Performance Indicators

- Decrease in project delivery timeframes to production
- Increase in the number of integrated applications using programmatic interfaces
- Increase in the number of funded projects that conform to an EA Checklist
- Decrease in ad-hoc data sharing
- Increase in automated data exchange
- Increase in the number of known authoritative data sources
- Decrease in the number of copies of data
Enterprise Architecture Governance

Enterprise Architecture Executive Committee

IT executives who ensure that the vision and plan are addressed by the working group. Also provides consistent direction and problem-solving approaches for the working group and the EA program at large.
Meets monthly.

Co-Chairs: Anne Margulies and Stephen Gallagher
Members: Scott Bradner, Ben Gaucherin, Stephen Ervin, Gabriele Fariello, Praneeth Machettira, Pratike Patel, Jason Shaffner, Jason Snyder, Jim Waldo, Bob Wittstein

Enterprise Architecture Working Group

- Technical members of HUIT, Harvard Schools, and other IT departments that meet on a regular basis
- Defines the Enterprise Architecture framework for review by Steering Committee
- Defines sub-groups to detail layers
- Builds and reviews other EA components as per vision
- Publishes a monthly report on enterprise architecture progress, issues, and direction for the organization

Chair: Jason Snyder
Members: Scott Bradner, Bill Brickman, Dan Kaplan, Arnold Paul, Robert Piscitello, Jon Saperia, Raoul Sevier, Michael Thomas
EA Program Approach

Layers
- Security
 - User Experience
 - Applications and Software Components
 - Interoperation
 - Data
 - Middleware
 - Infrastructure and IaaS
 - Networking

Advisories, Methodologies, and Principles
- Architectures
- UX Consultation
- Ad-Hoc Consultation
- ITCRB and PRC Reviews

Outreach and Training

Communication & Education
- Evaluate Skills & Organizational Needs

Re-Evaluate: Identify Places Where EA Can Make an Impact
Key Terminology: Layers

<table>
<thead>
<tr>
<th>Layers</th>
<th>Definition</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>User eXperience</td>
<td>End-user look-and-feel and navigation style of an application or service.</td>
<td>Appearance of the Harvard brand, color schemes, use of ‘breadcrumbs’, position and appearance of navigation bars.</td>
</tr>
<tr>
<td>Applications, services, SaaS</td>
<td>Algorithms and code that provide technical or business value.</td>
<td>Large-scale apps such as SIS, small apps such as Electronic Submission Tracking and Reporting (ESTR), services such as Informatica for data transfers, and Software-as-a-Service solutions such as Office365.</td>
</tr>
<tr>
<td>Interoperation</td>
<td>Exchanges of information and provisioning of business transactions between different applications and services.</td>
<td>Information exchanges include transfers of student registration from SIS to central directories, or transfer of account balance values from financial to CRM systems. One remote service is IAM’s Authentication service.</td>
</tr>
<tr>
<td>Data</td>
<td>Information represented in formats managed by apps and services.</td>
<td>Structured data include student records and general ledger financial data; unstructured data include e-books, wiki content, and most of the information available on the Internet.</td>
</tr>
<tr>
<td>Middleware</td>
<td>Common business or technical services that are implemented separately from applications and services.</td>
<td>Database technologies are the most common example of middleware, but this layer can also include reporting ‘engines’, rules ‘engines’, application servers, data transfer applications, and other common shared services.</td>
</tr>
<tr>
<td>Infrastructure</td>
<td>Hardware and virtualized platforms that operate applications, services, and their components.</td>
<td>Servers, associated storage components, operating systems, and other computing devices are common examples, as well as cloud-based infrastructures of Platform-as-a-Service and Infrastructure-as-a-Service.</td>
</tr>
<tr>
<td>Networks</td>
<td>Communications tech to join infrastructures in disparate locations.</td>
<td>Wired and wireless communications supported by devices such as routers, switches, and naming services.</td>
</tr>
<tr>
<td>Security</td>
<td>Use of resources by authorized individuals and computing services to information, business functions, and computing services.</td>
<td>Mechanisms include door locks, user IDs/passwords, and intrusion detection/prevention tools. These are supported by apps/services to manage user and systemic authentication, authorization, and access to functionality and data.</td>
</tr>
<tr>
<td>Processes</td>
<td>Definition</td>
<td>Examples</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Principles</td>
<td>Foundational elements to drive decision-making and alignment.</td>
<td>Principles can be applied at many levels, from guiding principles that characterize strategic, enterprise-wide systemic behavior, to principles that help explain detailed technical behaviors of applications and services.</td>
</tr>
<tr>
<td>Methodologies</td>
<td>Methodologies divide IT work into phases for better planning and management, and determine methods or “best practices” to be applied to specific cases. May include specific deliverables/artifacts.</td>
<td>Waterfall, prototyping, iterative, and incremental development; spiral development; rapid application development; extreme programming; Agile.</td>
</tr>
<tr>
<td>Advisories</td>
<td>Recommendations offered as a guides to specific actions or practices.</td>
<td>Security notifications of newly discovered vulnerabilities with recommendations for patching systems or changing passwords; and announcements of changes to the features, forms, or functions of applications.</td>
</tr>
<tr>
<td>Patterns</td>
<td>Generic models or descriptions from which specific implementations can be based or derived.</td>
<td>Reusable approaches for connecting applications to databases, establishing user security within an application, or implementing user experience in a solution.</td>
</tr>
<tr>
<td>Reference Architectures</td>
<td>A template solution that defines an architecture for a particular domain using multiple patterns and a vocabulary that promotes commonality.</td>
<td>Business reference architectures include Insurance Application Architecture (insurance), and HL7 V2.5 (health records). One technical reference architecture is Java Enterprise Edition for IT systems construction.</td>
</tr>
<tr>
<td>Outreach</td>
<td>Elevating awareness of programs and initiatives to affected populations.</td>
<td>Broadly-focused outreach at Harvard includes ABCD meetings on a wide range of IT topics; more narrowly focused are Big Group meetings on specialist topics such as IT skills upgrades.</td>
</tr>
<tr>
<td>Training</td>
<td>Acquiring knowledge and skills as a result of teaching on specific competencies, with a goal of improving productivity and performance.</td>
<td>IT techniques training could include database design, software coding in node.js, and process modeling with BPMN. Vendor tool training could include Oracle Financials, PeopleSoft, and Informatica ETL.</td>
</tr>
</tbody>
</table>
Interoperation: Current State of Identity Data

[Diagram showing data flows and data formats]

GMAS (and others - e.g. Library Campus Services, HUHS)

Athletic Membership

Data Format
- XML IAM Format
- XML HBS Format
- XML PeopleSoft New Hire Schema
- PeopleSoft Input XML
- DB View
- Human Input
- Pipe Delimit
- Oracle Datapump File
- Fixed Length Field Text File
- FindPerson/JSON

Transfer Protocol/Creation Method
- SFTP
- HTTP Post
- SQL query and SQLLOAD
- Web service
- RESTful FindPerson (JSON) service
Interoperation: Current State of SIS Data

SIS/Campus Solutions

Data Format
- JSON - (FindPerson)
- XML SIS Standard Admission XSD
- Tab Delimited Admission Data
- Fixed Length Field Text File
- Pipe Delimited
- PeopleSoft HR to SIS XML
- PeopleSoft Payroll to SIS XML

Transfer Protocol/Creation Method
- SOAP/XML
- SFTP into SIS
- SFTP from SIS
- Web REST/JSON FindPerson service
Interoperation: Domains

Modular Approach to Data/Service Integration

Service and Data Integration

- Operations
- Operations (5)
- Organizational Structure and Approaches (4)
- Data Controls and Analyses (3)
- Data Analyses/Tools
- Data Governance
- Ad hoc analysis
- Routine Analyses
- Metrics/Time Variance/Series and Cross Subject Correlation
- Snapshot Operational Detail/Audit
- Master Data Management
- Data Controls
- Data Warehouse
- Information Bus
- Other Resources
- Training
- Operational Engineering
- Outreach support - Engineers on Loan
- Operational Engineering

Enterprise Architecture (1)

- Technologies for Integration
- Architectural Principles
- Design Patterns, etc.
- API's
- Documentation
- Change Management
- Educational (e.g., eduPerson)
- Standards
- Other de facto/de jure standards
- System/Technology Acquisition
- Selection and Acquisition Guidelines
- Exception Processes

Software and Systems Engineering (2)

- Data Warehouse
- Information Bus
- Data Marts
- Data Maintenance and Management
- Example code/libraries
- Automated instrumentation

Jon Saperia - 1/7/2015 - Version 1.0
Interoperation: Establishing a Domain Work Plan (DRAFT)

Architecture
- Propose and Ratify Arch
- Define Arch Principles & Methodologies
- Document and Publish Architecture
- Develop and Deliver Advisories
- Refine Patterns & Reference Arch

Patterns, Reference Architecture
- Deploy Prototype Integration Services
- Pilot Services with Selected Feeds
- Inventory Current Feeds & Apps
- Scale Integration Services
- Planned Upgrades

Operational Services
- Select and Integrate with Services
- Outsource School Integration to EA
- Integrate Existing School Capabilities with EA

Application Adaptors
- Establish InterOp Working Group
- Establish InterOp Working Group
- Outsource School Integration to EA

Governance
- Establish Master Data Standards
- Develop KPIs
- Develop KPIs

Strategic & Tactical Measurement
- Review Operational Metrics
- Review Operational Metrics

Operations
- Operate InterOp Services
- Operations Management: Measure Service QOS and Data Quality
- Deliver Operational Training and Support

Methodologies, Ops Mgmt, Training

KEY: EA Team | App Teams | Schools | Planned
Interoperation: Proposed Vision and Guiding Principles

<table>
<thead>
<tr>
<th>Our Vision for Interoperation in the Enterprise Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provide a framework and a set of standards to enable acquisition, development, and deployment of integration services that maximize information sharing, minimize duplication, and simplify the IT environment across all of Harvard.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proposed Guiding Principles</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Similar data exchanged between applications have standard definitions and formats</td>
</tr>
<tr>
<td>• Publish event-driven data once, as soon as applications have it available</td>
</tr>
<tr>
<td>• Allow subscribers to data to specify the frequency of delivery</td>
</tr>
<tr>
<td>• Web services or APIs that perform business services are implemented once</td>
</tr>
<tr>
<td>• Interoperation improvements will displace, not break, current implementations</td>
</tr>
<tr>
<td>• Focus one organization with deep skills for continued development operation of Interoperation solutions</td>
</tr>
<tr>
<td>• Leverage existing successes</td>
</tr>
</tbody>
</table>
Questions or comments?
Thank you!